Plotino – Tratado 23,5 (VI, 5, 5) — Prevenções contra a metáfora do círculo e dos raios

Míguez

5. Para hacer más claro este argumento, apelamos a la multiplicidad de rayos provenientes de un centro único. Y, así, queremos llevar a concebir cómo surgió la multiplicidad. Conviene advertir para ello que toda la multiplicidad de que se habla ha sido engendrada de una vez, en tanto podremos imaginar en un círculo rayos separados y que realmente no existan; porque se trata aquí de una superficie.

Nada allí de superficie ni de intervalo. Las potencias y las esencias no poseen dimensiones y diríase que todas ellas semejan centros que se reúnen en uno solo. Un ejemplo nos lo ofrecen los rayos que aparecen limitados por la parte de su centro, donde todo converge en la unidad. Sí os hacéis de nuevo con ellos, incluso los rayos que dejaron su centro quedarán sujetos a él, y, ciertamente, tampoco cada uno de los centros se verá separado del centro único y primero. Todos se dan en el mismo lugar y son en tan gran número como los rayos a los que sirven de límite. Y es así como se establece una correspondencia entre los rayos y los centros que se nos muestran, pero, sin embargo, todos ellos constituyen una unidad.

He aquí que si comparamos todos los inteligibles con esos múltiples centros que se refieren y se unen al centro único, su multiplicidad se manifiesta por los rayos mismos, pero sin que sean esos rayos los que la engendran sino los que la dan a conocer. Los rayos, pues, nos servirán en la presente ocasión para ofrecer analógicamente las cosas a las que alcanza la naturaleza inteligible; de este modo se hará presente su multiplicidad y su presencia en todo lugar.

Bouillet

V. Pour éclaircir ce point, on se sert souvent de la comparaison suivante : figurez-vous, dit-on, une multitude de rayons qui partent d’un centre unique, et vous arrive – 347 rez à concevoir la multitude engendrée dans le monde intelligible. Mais, en admettant cette proposition que les choses engendrées dans le monde intelligible et qu’on nomme la multitude (τὰ πολλά) existent toutes ensemble, il faut ajouter une remarque : dans le cercle, les rayons qui ne sont pas distincts peuvent être supposés distincts, parce que le cercle est un plan ; mais là où il n’y a même pas l’étendue propre au plan, où il n’y a que des puissances et des essences sans étendue, on doit concevoir toutes choses comme des centres unis ensemble dans un centre unique, comme seraient des rayons considérés avant tout développement dans l’espace et pris à leur origine, où ils ne forment avec le centre qu’un seul et même point. Si vous supposez des rayons développés, ils dépendront des points dont ils partent, et chaque point n’en sera pas moins un centre que rien ne séparera du premier centre : de cette manière, ces centres, tout en étant unis au premier centre, n’en auront pas moins leur existence individuelle, et formeront un nombre égal à celui des rayons dont ils sont les origines; autant de rayons viendront concourir au premier centre, autant il paraîtra y avoir de centres, et cependant tous ensemble ne feront qu’un. Si nous comparons donc tous les intelligibles à des centres, j’entends à des centres qui coïncident en un seul centre et s’unissent en lui, mais qui paraissent multiples à cause des divers rayons qui les manifestent sans les engendrer, ces rayons peuvent servira nous donner une idée des choses par le contact desquelles l’Essence intelligible paraît être multiple et présente partout (15).

Guthrie

EXAMPLE OF THE SUN AND THE RAYS.

5. In order to clear up this point, the following illustration has been much used. Let us imagine a multitude of rays, which start from a single centre; and you will succeed in conceiving the multitude begotten in the intelligible world. But, admitting this proposition, that things begotten in the intelligible, and which are called multitude, exist simultaneously, one observation must be added: in the circle, the rays which are not distinct may be supposed to be distinct, because the circle is a plane. But there, where there is not even the extension proper to a plane, where there are only potentialities and beings without extension, all things must be conceived as centres united together in a single centre, as might be the rays considered before their development in space, and considered in their origin, where, with the centre, they form but a single and same point. If now you imagine developed rays, they will depend from the points from where they started, and every point will not be any the less a centre, as nothing will separate it from the first centre. Thus these centres, though united to the first centre, will not any the less have their individual existence, and will form a number equal to the rays of which they are the origins. As many rays as will come to shine in the first centre, so many centres will there seem to be; and, nevertheless, all together will form but a single one. Now if we compare all intelligible entities to centres, and I mean centres that coincide in a single centre and unite therein, but which seem multiple because of the different rays which manifest, without begetting them, such rays could give us some idea of the things by the contact of which intelligible being seems to be manifold and present everywhere.

MacKenna

5. Often for the purpose of exposition – as a help towards stating the nature of the produced multiplicity – we use the example of many lines radiating from one centre; but, while we provide for individualization, we must carefully preserve mutual presence. Even in the case of our circle we need not think of separated radii; all may be taken as forming one surface: where there is no distinction even upon the one surface but all is power and reality undifferentiated, all the beings may be thought of as centres uniting at one central centre: we ignore the radial lines and think of their terminals at that centre, where they are at one. Restore the radii; once more we have lines, each touching a generating centre of its own, but that centre remains coincident with the one first centre; the centres all unite in that first centre and yet remain what they were, so that they are as many as are the lines to which they serve as terminals; the centres themselves appear as numerous as the lines starting from gem and yet all those centres constitute a unity.

Thus we may liken the Intellectual Beings in their diversity to many centres coinciding with the one centre and themselves at one in it but appearing multiple on account of the radial lines – lines which do not generate the centres but merely lead to them. The radii, thus, afford a serviceable illustration for the mode of contact by which the Intellectual Unity manifests itself as multiple and multipresent.

Abellio, Raymond (29) Antiguidade (26) Aristotelismo (28) Barbuy, Heraldo (45) Berdyaev, N A (29) Bioética (65) Bréhier – Plotin (395) Coomaraswamy, Ananda (473) Enéada III, 2 (47) (22) Enéada III, 6 (26) (21) Enéada IV, 3 (27) (33) Enéada IV, 4 (28) (47) Enéada VI, 1 (42) (32) Enéada VI, 2 (43) (24) Enéada VI, 3 (44) (29) Enéada VI, 7 (38) (43) Enéada VI, 8 (39) (25) Espinosa, Baruch (37) Evola, Julius (108) Faivre, Antoine (24) Fernandes, Sergio L de C (77) Ferreira da Silva, Vicente (21) Ferreira dos Santos, Mario (39) Festugière, André-Jean (41) Gordon, Pierre (23) Guthrie – Plotinus (349) Guénon, René (699) Jaspers, Karl (27) Jowett – Platão (501) Kierkegaard, Søren Aabye (29) Lavelle, Louis (24) MacKenna – Plotinus (423) Mito – Mistérios – Logos (137) Modernidade (140) Mundo como Vontade e como Representação I (49) Mundo como Vontade e como Representação II (21) Míguez – Plotino (63) Noções Filosóficas (22) Ortega y Gasset, José (52) Plotino (séc. III) (22) Pré-socráticos (210) Saint-Martin, Louis-Claude de (27) Schuon, Frithjof (358) Schérer, René (23) Sophia Perennis (125)