Página inicial > Antiguidade > Neoplatonismo (245-529 dC) > Plotino (204-270 dC) – Tratados Enéadas > Plotino - Tratado 32,4 (V, 5, 4) — Sobre a relação entre o Uno e os (...)

ENÉADAS

Plotino - Tratado 32,4 (V, 5, 4) — Sobre a relação entre o Uno e os números

Enéada V, 5, 4

terça-feira 14 de junho de 2022, por Cardoso de Castro

Capítulo 4: Sobre a relação entre o Uno e os números

  • 1-6: É necessário possuir uma unidade verdadeira, que está acima do Intelecto e que é mais una que ele
  • 6-16: Trata-se de um Uno puro e real
  • 16-38: O Uno está além do número e não é constitutivo da díade

Míguez

4. Conviene, pues, remontarse al Uno, y al Uno verdadero. Esta unidad no es como los otros unos que, siendo múltiples, poseen la unidad por su participación en el Uno. Hemos de aprehender el Uno que no es tal a manera de participación, y que tampoco es más uno que múltiple. Porque el mundo inteligible y la Inteligencia tienen más unidad que los demás seres y están más cerca del Uno que todos ellos, aunque no sean el Uno en su total pureza. Pero, ¿qué es el Uno puro y verdadero, el Uno que no se dice de ninguna otra cosa y que nosotros deseamos ver, en cuanto ello nos es posible? Es preciso, entonces, lanzarse hacia el Uno y no añadirle ya nada más, sino detenerse en El, cuidando por entero de no alejarse de ahí y de no avanzar en medida alguna hacia la díada. Porque, en ese caso, tendríais el dos, y no el dos en el que el Uno entrase como unidad, sino el acoplamiento posterior de ambos. Ya que el Uno no se reúne numéricamente con ninguna otra cosa, ni con una unidad ni con otro número cualquiera, dado que, en general, no puede ser considerado como número. Pues él mismo es una medida, pero no es, en cambio, algo medido; ni es tampoco igual a las demás cosas, porque, siendo así, existiría con ellas. Y, entonces, existiría también algo que fuese común, a El y a las cosas que cuentan con El, término que tendría que precederle. No puede atribuírsele el número sustancial, como tampoco puede atribuirse a éste el número que le es posterior y con el que se numera la cantidad. Entiéndase por número sustancial el que da siempre el ser a la Inteligencia, y por número de una cantidad el que produce, precisamente, la cantidad por su unión a otros números, o, incluso, sin unirse a otros números, por ser ya él mismo un verdadero número. Por lo demás, la cantidad numérica que dice relación a la unidad imita a los números sustanciales que dicen relación a su principio, pues, en efecto, ni destruye ni desgarra la unidad para poder llegar a ser, así, cuando el número dos es engendrado, ya existe la unidad anterior a él, que no consiste en las unidades de la díada o siquiera en una de las que componen el número dos. Porque, ¿cómo habría de ser una unidad y no otra? Si, pues, no es ninguna de ellas, tendrá que ser la unidad superior subsistente por sí misma. Pero, ¿cómo entender las otras unidades? ¿Y cómo, por ejemplo, el número dos es uno? Y, si es uno, ¿se trata del mismo uno que se encuentra en esas dos unidades? Sin duda, se da una participación en la primera unidad, tanto por las dos unidades como por la díada en tanto que unidad; pero esta participación no es la misma. De igual manera, tampoco es la misma la unidad de un ejército y la unidad de una casa; porque la casa es una en razón a su continuidad, pero no por ser una en su ser o según la cantidad. Cabría preguntarse sí las unidades del número cinco son diferentes de las unidades del número diez, en tanto la unidad que hace del número cinco un uno "es la misma que la que hace del número diez otro uno. Porque sí comparamos una nave a otra nave — una nave pequeña a una grande —, una ciudad a otra ciudad, un ejército a otro ejército, resulta claro que son unidades de la misma clase. Pero si la unidad no era la misma en el caso anteriormente citado, tampoco debería serlo en los casos siguientes. Quedan, por tanto, al descubierto algunas dificultades sobre las que volveremos más adelante.

Bouillet

IV. Nous avons déjà dit qu’il faut s’élever au principe qui est un, réellement un, et non un de la même manière que les autres choses, lesquelles, multiples par elles-mêmes, ne sont unes que par participation [ce principe, au contraire, n’est pas un par participation, comme l’est ce qui n’est pas plutôt un que multiple) - Nous avons également dit que l’Intelligence et le monde intelligible sont plus uns que le reste, qu’ils approchent de l’Un plus que toutes les autres choses, mais qu’ils ne sont pas purement l’Un. Maintenant, nous allons examiner, autant que nos forces nous le permettent, en quoi consiste le principe qui est l’Un purement, essentiellement, et non par autrui.

Élevons-nous donc à l’Un, ne lui ajoutons rien, et reposons-nous en lui, en prenant garde de nous en éloigner et de tomber dans la dualité. Sans cette attention, en effet, nous aurons la dualité, qui ne peut nous offrir l’unité, parce qu’elle lui est postérieure. L’Un ne se laisse pas nombrer avec autre chose, ni avec la monade, ni avec quoi que ce soit; il ne se laisse nombrer d’aucune manière : car il est la mesure sans être mesuré lui-même; il n’est pas au même rang que les autres choses, il ne s’additionne pas avec elles; sinon, il aurait quelque chose de commun avec les êtres avec lesquels il serait nombre ; par suite, il serait inférieur à ce quelque chose de commun, tandis qu’il doit n’avoir rien au-dessus de lui. Ni le nombre essentiel, ni le nombre inférieur à celui-ci et propre à la quantité ne peuvent être affirmés de l’Un : ni le nombre essentiel, dis-je, en qui l’être est identique à la pensée ; ni le nombre propre à la quantité, qui constitue la quantité concurremment avec les autres genres, ou même sans leur concours, puisque tout nombre est quantité (06). En outre, le nombre propre à la quantité, imitant les nombres antérieurs dans leur rapport à l’Un qui est leur principe, trouve son existence dans son rapport à l’Un véritable, qu’il ne partage point et ne divise point; mais, quand la dyade est née, la monade est avant la dyade, elle n’est d’ailleurs ni chacune des unités qui constituent la dyade, ni l’une d’elles seulement : car, pourquoi serait-elle Tune plutôt que l’autre? Si donc la monade n’est aucune des deux unités qui constituent la dyade, elle leur est supérieure, et, tout en demeurant en elle-même, elle parait ne pas y demeurer. Comment donc ces unités sont-elles autres que la monade? Comment la dyade est-elle une, et l’unité qu’elle forme est-elle la même que celle qui est contenue dans chacune des deux unités qui la constituent? Les unités [qui constituent la dyade] participent de l’unité première, mais en diffèrent. La dyade, en tant qu’elle est une, participe aussi de l’unité, mais de manières diverses : car une maison et une armée ne sont pas deux unités pareilles ; c’est ainsi que la dyade, dans son rapport au continu, n’est pas la même en tant qu’elle est une et en tant qu’elle est une quantité une. Les unités contenues dans la pentade sont-elles donc dans un autre rapport avec l’un que les unités contenues dans la décade ? Si, quand on compare un petit navire à un grand, une ville à une autre, une armée à une autre, l’unité est la même, elle sera aussi la même dans ces nombres; si elle n’est pas la même dans le premier cas, elle n’est pas non plus la même dans le second. S’il reste encore quelques questions à résoudre sur ce sujet, nous les examinerons dans la suite.

Guthrie

THE COURSE UPWARDS IS ONE OF UNIFICATION.

4. It has already been said that we must rise to the Principle which is really one, and not one in the same way as are other things, which, being in themselves multiple, are one only by participation. On the contrary, that Principle is not one by participation, as are all those things which (being neutral) would just as lief be multiple as one. We have also said that Intelligence and the intelligible world, are more unitary than the remainder, that they approach Unity more than all other things, but that they are not purely one. To the extent of our ability we are now going to examine in what the Principle which is purely one consists, purely and essentially, and not (accidentally) from without.

THE THEORY OF THE UNIQUE; THE PAIR; AND THE GROUP.

Rising therefore to the One, we must add nothing to Him; we must rest in Him, and take care not to withdraw from Him, and fall into the manifold. Without this precaution there will be an occurrence of duality, which cannot offer us unity, because duality is posterior to Unity. The One cannot be enumerated along with anything, not even with uniqueness (the monad), nor with anything else. He cannot be enumerated in any way; for He is measure, without Himself being measured; He is not in the same rank with other things, and cannot be added to other things (being incommensurable). Otherwise, He would have something in common with the beings along with which He would be enumerated; consequently, He would be inferior to this common element, while on the contrary He must have nothing above Him (if He is to be the one first Being). Neither essential (that is, intelligible) Number, nor the lower number which refers to quantity, can be predicated of the unique; I repeat, neither the essential intelligible Number, whose essence is identical with thought, nor the quantative number, which, because all number is quantity, constitutes quantity concurrently with, or independently of other genera. Besides, quantative number, by imitating the former /essential intelligible) Numbers in their relation to the Unique, which is their principle, finds its existence in its relation to real Unity, which it neither shares nor divides. Even when the dyad (or "pair") is born, (it does not alter) the priority of the Monad (or Uniqueness). Nor is this Uniqueness either of the unities that constitute the pair, nor either of them alone; for why should it be one of them rather than the other? If then the Monad or Uniqueness be neither of the two unities which constitute the pair, it must be superior to them, and though abiding within itself, does not do so. In what then do these unities differ from the Uniqueness (or Monad) ? What is the unity of the "pair"? Is the unity formed by the "pair" the same as that which is contained in each of the two unities constituting the "pair"? The unities (which constitute the "pair") participate in the primary Unity, but differ from it. So far as it is one, the "pair" also participates in unity, but in different ways; for there is no similarity between the unity of a house and the unity of an army. In its relation to continuity, therefore, the "pair" is not the same so far as it is one, and so far as it is a single quantity. Are the unities contained in a group of five in a relation to unity different from that of the unities contained in a group of ten? (To answer this we must distinguish two kinds of unity). The unity which obtains between a small and a great ship, and between one town and another, and between one army and another, obtains also between these two groups of five and of ten. A unity which would be denied as between these various objects would also have to be denied as obtaining between these two groups. (Enough of this here); further considerations will be studied later.

MacKenna

4. We have said that all must be brought back to a unity: this must be an authentic unity, not belonging to the order in which multiplicity is unified by participation in what is truly a One; we need a unity independent of participation, not a combination in which multiplicity holds an equal place: we have exhibited, also, the Intellectual Realm and the Intellectual-Principle as more closely a unity than the rest of things, so that there is nothing closer to The One. Yet even this is not The purely One.

This purely One, essentially a unity untouched by the multiple, this we now desire to penetrate if in any way we may.

Only by a leap can we reach to this One which is to be pure of all else, halting sharp in fear of slipping ever so little aside and impinging on the dual: for if we fail of the centre, we are in a duality which does not even include The authentic One but belongs on both sides, to the later order. The One does not bear to be numbered in with anything else, with a one or a two or any such quantity; it refuses to take number because it is measure and not the measured; it is no peer of other entities to be found among them; for thus, it and they alike would be included in some container and this would be its prior, the prior it cannot have. Not even essential [ideal or abstract] number can belong to The One and certainly not the still later number applying to quantities; for essential number first appears as providing duration to the divine Intellection, while quantitative number is that [still later and lower] which furnishes the Quantity found in conjunction with other things or which provides for Quantity independent of things, if this is to be thought of as number at all. The Principle which in objects having quantitative number looks to the unity from which they spring is a copy [or lower phase] of the Principle which in the earlier order of number [in essential or ideal number] looks to the veritable One; and it attains its existence without in the least degree dissipating or shattering that prior unity: the dyad has come into being, but the precedent monad still stands; and this monad is quite distinct within the dyad from either of the two constituent unities, since there is nothing to make it one rather than the other: being neither, but simply that thing apart, it is present without being inherent.

But how are the two unities distinct and how is the dyad a unity, and is this unity the same as the unity by which each of the constituents is one thing?

Our answer must be that the unity is that of a participation in the primal unity with the participants remaining distinct from that in which they partake; the dyad, in so far as it is one thing, has this participation, but in a certain degree only; the unity of an army is not that of a single building; the dyad, as a thing of extension, is not strictly a unit either quantitatively or in manner of being.

Are we then to take it that the monads in the pentad and decad differ while the unity in the pentad is the same as that in the decad?

Yes, in the sense in which, big and little, ship is one with ship, army with army, city with city; otherwise, no. But certain difficulties in this matter will be dealt with later.