Página inicial > Filosofia da Ciência e da Técnica > de Castro (SEI): essência do matemático

Da essência da informática

de Castro (SEI): essência do matemático

Técnica e informática a partir do pensamento de M. Heidegger

quarta-feira 20 de outubro de 2021, por Cardoso de Castro

      

DE CASTRO  , Murilo Cardoso. Sobre a essência   da informática. Técnica e Informática a partir do pensamento   de M. Heidegger  . Tese (Doutorado em Filosofia) – Instituto de Filosofia e Ciências Sociais da Universidade Federal do Rio de Janeiro. Rio de Janeiro, p. 189. 2005. (revisado)

      

Heidegger  , no livro “O Sofista   de Platão” (1992/1997), curso dado em 1924-1925, levantava também um pensar   sobre a matematização. No parágrafo §15 (pág. 69) desta obra, no qual examina a essência   da matemática de acordo   com Aristóteles, começa afirmando que o conhecimento matemático tem como tema aquilo que mostra a si mesmo  , por ser resgatado de algo e especificamente daquilo que é imediatamente dado. O matemático é o assim extraído daquilo que mostra a si mesmo de modo imediato.

Esta extração, separação   ou abstração está conectada com a chora  , lugar; e, este lugar pertence aos entes eles mesmos. O matemático toma algo de seu próprio   lugar, embora o matemático não esteja em um local (topos). Em termos modernos isto soa paradoxal, mas esta separação é para Aristóteles o modo como o matemático ele próprio se torna objetivo.

Segundo Heidegger, Aristóteles enfatiza que o objeto matemático está em “local algum”. O local (topos) deve ser algo, como, por exemplo, quando temos água em uma jarra e esvaziamos, passando agora a ser preenchido por ar, o local, onde havia água e agora tem ar, sempre esteve lá independente do conteúdo. O não-local não significa o topos como algo separado   do que nele se encontra, mas como distinto. O local tem assim certo poder (dynamis  ), implicando que o local pertence ao ente   ele mesmo; o local constitui precisamente a possibilidade da presença própria do ente em questão. Deste modo, pode afirmar   que cada ente tem seu local.

Em um curso apresentado em 1935-1936, Heidegger (1962/1971) afirma que a essência das matemáticas (o que se poderia chamar o matemático) evocava na Grécia antiga a lição  , o ato de aprender (mathesis) e o que se poderia aprender e, portanto, ensinar (mathemata).

Isto, por sua vez, se enquadrava dentro de um contexto amplo onde os gregos distinguiam vários tipos de realidade  : ta physika (as coisas que surgem e se produzem delas mesmas); ta poiomena (as coisas instituídas pela mão   ou ofício do homem  ); ta chremata   (as coisas na medida em que estão em uso); ta pragmata   (as coisas que lidamos para trabalhá-las ou transforma-las), ta mathemata (as coisas na medida em que podemos aprendê-las).

Este aprender significa “apropriar-se o uso de”, ou seja, o aprender é uma forma de apreender. Por outro lado, aprender é sempre aprender a conhecer, tomar conhecimento. “As mathemata são as coisas na medida em que tomamos conhecimento delas”. Neste sentido, é que a sentença no portal da Academia platônica (“que ninguém entre que não seja geômetra”) deve ser entendida, segundo Heidegger, não como uma exigência de formação em geometria   ou matemáticas, mas como a compreensão   “que a condição fundamental de possibilidade de um justo saber é o saber das pressuposições fundamentais de todo saber, e a atitude que tal saber sustenta”.

Deste modo, o sentido do aprender é fixado ontologicamente: o aprender é reconhecimento do ser sempre já conhecido da coisa. O aprender tem assim o caráter de antecipação  . Recolhemos a possibilidade de conhecer na coisa mesmo. Segundo Milet (2000) a originalidade de Heidegger é de incluir todas as ordens de coisas na perspectiva matemática [1], em particular as pragmata, onde aprender um instrumento é se reapropriar de uma familiaridade   latente. “É a reapropriação daquilo que está pré-revelado no saber inerente ao instrumento que torna possível a aprendizagem de sua natureza, e com a aprendizagem, a produção, o exercício, e o uso”.

Deste modo, Heidegger determina a essência da matemática em seis pontos capitais:

  • A matemática é um projeto que “salta” por cima das coisas em direção   a sua “coisidade”; ela abre um espaço de “mostração” das coisas, que é o domínio   dos “fatos”;
  • Nesse projeto é posto também aquilo pelo qual as coisas são dadas, ou seja, as modalidades segundo as quais elas são estimadas de antemão; os axiomas são proposições de fundamento, princípios;
  • Como axiomática, o projeto matemático, retomando a essência das coisas, traça ao mesmo tempo   seu esboço de construção e sua estrutura   de relações;
  • Ela define desta maneira um domínio, onde a axiomática se aplica, que é a natureza (conectividade espaço-temporal dos movimentos nos quais as coisas são determinadas como corpo e nada mais);
  • O gênero   do projeto matemático demanda primitivamente uma matemática precisa, da mensuração sob distintas formas.

A metafísica moderna nasce do projeto matemático, na medida em que visando o ente em sua totalidade deve fatalmente buscar seu solo matemático, até encontrar algo inabalável.

A “matemática” só se torna decisiva para a metafísica com a mudança   da veritas   para o certitudo. A matemática não é contudo aí apenas um modelo de conhecimento “maximamente rigoroso”. Ao contrário, o elemento   matemático — o estar-certo — caracteriza o modo fundamental do ser enquanto a re-presentacionalidade.

O problema é que este papel da matemática precisa fracassar logo que o estar-certo enquanto subjetividade torna-se mais nítido para si e a autoconsciência, sobretudo enquanto incondicionada, mostra-se como um âmbito, cuja dimensionalidade nunca é alcançada através do elemento “matemático” de um modo sintônico com sua essência. Este elemento permanece na circunscrição   da grandeza   e isto significa da consciência imediata e de seu cálculo. (Heidegger, 2000, pág. 160-161)


Ver online : O que é informática e sua essência. Pensando a "questão da informática" com M. Heidegger


HEIDEGGER, Martin. Qu’est-ce qu’une chose?. Paris: Gallimard, 1962/1971

HEIDEGGER, Martin. Que é uma coisa ?. Trad. Carlos Morujão. Lisboa: Edições 70, 1987/1992

HEIDEGGER, Martin. Plato’s Sophist. Trad. Richard Rojcewicz e André Schuwer. Bloomington: Indiana University Press, 1992/1997

HEIDEGGER, Martin. Nietzsche. Metafísica e Niilismo. Trad. Marcos Antonio Casa Nova. Rio de Janeiro: Relume Dumará, 2000

MILET, Jean-Philippe. L’Absolu Technique. Heidegger et la question de la technique. Paris: Editions Kimé, 2000


[1A nossa expressão “o matemático” tem sempre dois sentidos: significa, em primeiro lugar, o que se pode aprender do modo já referido e somente desse modo; em segundo lugar, o modo do próprio aprender e do proceder. O matemático é aquilo que há de manifesto nas coisas, em que sempre nos movimentamos e de acordo com o qual as experimentamos como coisas e como coisas de tal gênero. O matemático é a posição-de-fundo em relação às coisas na qual as coisas se nos pro-põem, a partir do modo como já nos foram dadas, têm de ser dadas e devem ser dadas. O matemático é, portanto, o pressuposto fundamental do saber acerca das coisas. (Heidegger, 1987/1992, pág. 81-82)